X - .
s*%%, InterviewBit

React Interview Questions

To view the live version of the (\‘{>
\)|

page, click here.
o

© Copyright by Interviewbit -

Contents

React Interview Questions for Freshers

0 e Noe u ok w b

10.
11.
12,
13.
14.
15.
16.
17.
18.
19.
20.

What is React?

What are the advantages of using React?

What are the limitations of React?

What is useState() in React?

What are keys in React?

What is JSX?

What are the differences between functional and class components?

What is the virtual DOM? How does react use the virtual DOM to render the UI?

. What are the differences between controlled and uncontrolled components?

What are props in React?

Explain React state and props.

Explain about types of side effects in React component.

What is prop drilling in React?

What are error boundaries?

What is React Hooks?

Explain React Hooks.

What are the rules that must be followed while using React Hooks?
What is the use of useEffect React Hooks?

Why do React Hooks make use of refs?

What are Custom Hooks?

Pagel © Copyright by Interviewbit

<%,
%%, InterviewBit React Interview Questions

React Interview Questions for Experienced

21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.

33.
34.
35.
36.
37.
38.
39.
40.

Explain Strict Mode in React.

How to prevent re-renders in React?

What are the different ways to style a React component?
Name a few techniques to optimize React app performance.
How to pass data between react components?

What are Higher Order Components?

What are the different phases of the component lifecycle?
What are the lifecycle methods of React?

Does React Hook work with static typing?

Explain about types of Hooks in React.

Differentiate React Hooks vs Classes.

How does the performance of using Hooks will differ in comparison with the
classes?

Do Hooks cover all the functionalities provided by the classes?

What is React Router?

Can React Hook replaces Redux?

Explain conditional rendering in React.

Explain how to create a simple React Hooks example program.

How to create a switching component for displaying different pages?
How to re-render the view when the browser is resized?

How to pass data between sibling components using React router?

Page 2 © Copyright by Interviewbit

o,
RN

InterviewBit React Interview Questions

React Interview Questions for Experienced

41. How to perform automatic redirect after login?

Page3 © Copyright by Interviewbit

Let's get Started

Introduction to React

React is an efficient, flexible, and open-source JavaScript framework library that
allows developers to the creation of simple, fast, and scalable web applications.
Jordan Walke, a software engineer who was working for Facebook created React. It
was first deployed on the news feed of Facebook in 2011 and on Instagram in 2012.
Developers from the Javascript background can easily develop web applications with
the help of React.

React Hooks will allow you to use the state and other features of React in which
requires a class to be written by you. In simple words, we can say that, React Hooks
are the functions that will connect React state with the lifecycle features from the
function components. React Hooks is among the features that are implemented
latest in the version React 16.8.

Scope of React: The selection of the right technology for application or web
development is becoming more challenging. React has been considered to be the
fastest-growing Javascript framework among all. The tools of Javascript are firming
their roots slowly and steadily in the marketplace and the React certification demand
is exponentially increasing. React is a clear win for front-end developers as it has a
quick learning curve, clean abstraction, and reusable components. Currently, there is
no end in sight for React as it keeps evolving,.

React Interview Questions for Freshers

1. What is React?

Page 4 © Copyright by Interviewbit

InterviewBit React Interview Questions

React is a front-end and open-source JavaScript library which is useful in developing
user interfaces specifically for applications with a single page. It is helpful in building
complex and reusable user interface(Ul) components of mobile and web applications
as it follows the component-based approach.

The important features of React are:

It supports server-side rendering.

It will make use of the virtual DOM rather than real DOM (Data Object Model) as
RealDOM manipulations are expensive.

It follows unidirectional data binding or data flow.

It uses reusable or composable Ul components for developing the view.

2. What are the advantages of using React?

MVC is generally abbreviated as Model View Controller.

Use of Virtual DOM to improve efficiency: React uses virtual DOM to render the
view. As the name suggests, virtual DOM is a virtual representation of the real
DOM. Each time the data changesin a react app, a new virtual DOM gets created.
Creating a virtual DOM is much faster than rendering the Ul inside the browser.
Therefore, with the use of virtual DOM, the efficiency of the app improves.
Gentle learning curve: React has a gentle learning curve when compared to
frameworks like Angular. Anyone with little knowledge of javascript can start
building web applications using React.

SEO friendly: React allows developers to develop engaging user interfaces that
can be easily navigated in various search engines. It also allows server-side
rendering, which boosts the SEO of an app.

Reusable components: React uses component-based architecture for
developing applications. Components are independent and reusable bits of
code. These components can be shared across various applications having
similar functionality. The re-use of components increases the pace of
development.

Huge ecosystem of libraries to choose from: React provides you with the
freedom to choose the tools, libraries, and architecture for developing an
application based on your requirement.

Page5 © Copyright by Interviewbit

InterviewBit React Interview Questions

3. What are the limitations of React?

The few limitations of React are as given below:

e Reactisnot a full-blown framework as it is only a library.

e The components of React are numerous and will take time to fully grasp the
benefits of all.

e |t might be difficult for beginner programmers to understand React.

e Coding might become complex as it will make use of inline templating and JSX.

4. What is useState() in React?

The useState() is a built-in React Hook that allows you for having state variables in
functional components. It should be used when the DOM has something that is
dynamically manipulating/controlling.

In the below-given example code, The useState(0) will return a tuple where the count
is the first parameter that represents the counter’s current state and the second
parameter setCounter method will allow us to update the state of the counter.

const [count, setCounter] = useState(0);
const [otherStuffs, setOtherStuffs] = useState(...);

const setCount = () => {
setCounter(count + 1);
setOtherStuffs(...);

. e

We can make use of setCounter() method for updating the state of count anywhere.
In this example, we are using setCounter() inside the setCount function where various
other things can also be done. The idea with the usage of hooks is that we will be able
to keep our code more functional and avoid class-based components if they are not
required.

5. What are keys in React?

A key is a special string attribute that needs to be included when using lists of
elements.

Page 6 © Copyright by Interviewbit

99,

RN

InterviewBit React Interview Questions

The “React Way” to render a List

0 i
v I
v e
0 o

‘@% InterviewBit

Example of a list using key -

const ids = [1,2,3,4,5];

const listElements = ids.map((id)=>{
return(

<1li key={id.toString()}>

{id}

</1i>

)

1)

Importance of keys -

Keys help react identify which elements were added, changed or removed.
Keys should be given to array elements for providing a unique identity for each
element.

Without keys, React does not understand the order or uniqueness of each
element.

With keys, React has an idea of which particular element was deleted, edited,
and added.

Keys are generally used for displaying a list of data coming from an API.

Page7 © Copyright by Interviewbit

<%,
%%, InterviewBit React Interview Questions

***Note- Keys used within arrays should be unique among siblings. They need
not be globally unique.

6. What is JSX?

JSX stands for JavaScript XML. It allows us to write HTML inside JavaScript and place
them in the DOM without using functions like appendChild() or createElement().

As stated in the official docs of React, JSX provides syntactic sugar for
React.createElement() function.

Note- We can create react applications without using JSX as well.

Let’s understand how JSX works:

Without using JSX, we would have to create an element by the following process:

const text = React.createElement('p', {}, 'This is a text');
const container = React.createElement('div', '{}"', text);
ReactDOM.render (container, rootElement);

Using JSX, the above code can be simplified:

const container = (
<div>

<p>This is a text</p>
</div>

);

ReactDOM.render (container, rootElement);

As one can see in the code above, we are directly using HTML inside JavaScript.

7. What are the differences between functional and class
components?

Before the introduction of Hooks in React, functional components were called
stateless components and were behind class components on a feature basis. After
the introduction of Hooks, functional components are equivalent to class
components.

Page 8 © Copyright by Interviewbit

<%,
%%, InterviewBit React Interview Questions

Although functional components are the new trend, the react team insists on

keeping class componentsin React. Therefore, it isimportant to know how these
components differ.

On the following basis let’s compare functional and class components:

¢ Declaration

Functional components are nothing but JavaScript functions and therefore can be
declared using an arrow function or the function keyword:

function card(props){
return(
<div className="main-container">
<h2>Title of the card</h2>

</div>
)
}
const card = (props) =>{
return(
<div className="main-container">
<h2>Title of the card</h2>
</div>
)
}

Class components, on the other hand, are declared using the ES6 class:

class Card extends React.Component{
constructor(props){
super(props);

render (){
return(
<div className="main-container">
<h2>Title of the card</h2>
</div>
)
3
3

e Handling props

Page9 © Copyright by Interviewbit

<%,
%%, InterviewBit React Interview Questions

Let’s render the following component with props and analyse how functional and
class components handle props:

<Student Info name="Vivek" rollNumber="23" />

In functional components, the handling of props is pretty straightforward. Any prop
provided as an argument to a functional component can be directly used inside
HTML elements:

function StudentInfo(props){
return(
<div className="main">
<h2>{props.name}</h2>
<h4>{props.rollNumber}</h4>
</div>
)
}

In the case of class components, props are handled in a different way:

class StudentInfo extends React.Component{
constructor (props){
super(props);

}
render (){
return(
<div className="main">
<h2>{this.props.name}</h2>
<h4>{this.props.rollNumber}</h4>
</div>
)
}
}

As we can see in the code above, this keyword is used in the case of class
components.
¢ Handling state

Functional components use React hooks to handle state. It uses the useState hook to
set the state of a variable inside the component:

Page 10 © Copyright by Interviewbit

<%,
%%, InterviewBit React Interview Questions

function ClassRoom(props){
let [studentsCount, setStudentsCount] = useState(0);
const addStudent = () => {
setStudentsCount (++studentsCount);
}

return(
<div>
<p>Number of students in class room: {studentsCount}</p>
<button onClick={addStudent}>Add Student</button>
</div>

)
b

Since useState hook returns an array of two items, the first item contains the current
state, and the second item is a function used to update the state.

In the code above, using array destructuring we have set the variable name to
studentsCount with a current value of “0” and setStudentsCount is the function that
is used to update the state.

For reading the state, we can see from the code above, the variable name can be
directly used to read the current state of the variable.

We cannot use React Hooks inside class components, therefore state handling is
done very differently in a class component:

Let’s take the same above example and convert it into a class component:

Page 11 © Copyright by Interviewbit

<%,
%%, InterviewBit React Interview Questions

class ClassRoom extends React.Component{
constructor (props){
super(props);
this.state = {studentsCount : 0};

this.addStudent = this.addStudent.bind(this);

addStudent (){
this.setState((prevState)=>{
return {studentsCount: prevState.studentsCount++}

1)

render (){
return(
<div>
<p>Number of students in class room: {this.state.studentsCount}</p>
<button onClick={this.addStudent}>Add Student</button>
</div>

)
b
b

In the code above, we see we are using this.state to add the variable studentsCount
and setting the value to “0”.

For reading the state, we are using this.state.studentsCount.

For updating the state, we need to first bind the addStudent function to this. Only
then, we will be able to use the setState function which is used to update the state.

8. What is the virtual DOM? How does react use the virtual DOM
to render the UI?
As stated by the react team, virtual DOM is a concept where a virtual representation

of the real DOM is kept inside the memory and is synced with the real DOM by a
library such as ReactDOM.

Page 12 © Copyright by Interviewbit

<%, . .
%%, InterviewBit React Interview Questions

Document Object Model
Virtual DOM

o

DOM

Updated Virtual DOM
&8 InterviewBit

Why was virtual DOM introduced?

DOM manipulation is an integral part of any web application, but DOM manipulation
is quite slow when compared to other operationsin JavaScript. The efficiency of the
application gets affected when several DOM manipulations are being done. Most
JavaScript frameworks update the entire DOM even when a small part of the DOM
changes.

For example, consider a list that is being rendered inside the DOM. If one of the items
in the list changes, the entire list gets rendered again instead of just rendering the
item that was changed/updated. This is called inefficient updating.

To address the problem of inefficient updating, the react team introduced the
concept of virtual DOM.

How does it work?

Page 13 © Copyright by Interviewbit

<%,
%%, InterviewBit React Interview Questions

Real & Virtual DOMs

Updates

—>

Web page » Real DOM
Events
Updates Updates
Web page ¢ > React JS Virtual DOM) > Real DOM
Events Events

&R InterviewBit

For every DOM obiject, there is a corresponding virtual DOM object(copy), which has
the same properties. The main difference between the real DOM object and the
virtual DOM object is that any changes in the virtual DOM object will not reflect on the
screen directly. Consider a virtual DOM object as a blueprint of the real DOM object.
Whenever a JSX element gets rendered, every virtual DOM object gets updated.

**Note- One may think updating every virtual DOM object might be inefficient,
but that’s not the case. Updating the virtual DOM is much faster than updating
the real DOM since we are just updating the blueprint of the real DOM.

React uses two virtual DOMs to render the user interface. One of them is used to store
the current state of the objects and the other to store the previous state of the
objects. Whenever the virtual DOM gets updated, react compares the two virtual
DOMs and gets to know about which virtual DOM objects were updated. After
knowing which objects were updated, react renders only those objects inside the real
DOM instead of rendering the complete real DOM. This way, with the use of virtual
DOM, react solves the problem of inefficient updating.

9. What are the differences between controlled and
uncontrolled components?

Controlled and uncontrolled components are just different approaches to handling
input from elements in react.

Page 14 © Copyright by Interviewbit

InterviewBit React Interview Questions

Feature Uncontrolled Controlled Name attrs

One-time

value

retrieval v v v
(e.g.on

submit)

Validating on
submit

Field-level
Validation

Conditionally
disabling
submit
button

Enforcing
input format

several
inputs for
one piece of
data

dynamic
inputs

Page 15 © Copyright by Interviewbit

InterviewBit React Interview Questions

e Controlled component: In a controlled component, the value of the input
element is controlled by React. We store the state of the input element inside
the code, and by using event-based callbacks, any changes made to the input
element will be reflected in the code as well.

When a user enters data inside the input element of a controlled component,
onChange function gets triggered and inside the code, we check whether the value
entered is valid or invalid. If the value is valid, we change the state and re-render the
input element with the new value.

Example of a controlled component:

function FormValidation(props) {
let [inputValue, setInputValue] = useState("");
let updateInput = e => {
setInputValue(e.target.value);
}i
return (
<div>
<form>
<input type="text" value={inputValue} onChange={updateInput} />
</form>
</div>

);
}

As one can see in the code above, the value of the input element is determined by the
state of the inputValue variable. Any changes made to the input element is handled
by the updatelnput function.

¢ Uncontrolled component: In an uncontrolled component, the value of the input
element is handled by the DOM itself. Input elements inside uncontrolled
components work just like normal HTML input form elements.

The state of the input element is handled by the DOM. Whenever the value of the
input element is changed, event-based callbacks are not called. Basically, react does
not perform any action when there are changes made to the input element.

Whenever use enters data inside the input field, the updated data is shown directly.
To access the value of the input element, we can use ref.

Page 16 © Copyright by Interviewbit

<%,
%%, InterviewBit React Interview Questions

Example of an uncontrolled component:

function FormValidation(props) {

let inputValue = React.createRef();

let handleSubmit = e => {
alert(Input value: ${inputValue.current.value});
e.preventDefault();

h¥
return (
<div>
<form onSubmit={handleSubmit}>
<input type="text" ref={inputvValue} />
<button type="submit">Submit</button>
</form>
</div>
)
}

As one can see in the code above, we are not using onChange function to govern the
changes made to the input element. Instead, we are using ref to access the value of
the input element.

10. What are props in React?

The props in React are the inputs to a component of React. They can be single-valued
or objects having a set of values that will be passed to components of React during
creation by using a naming convention that almost looks similar to HTML-tag
attributes. We can say that props are the data passed from a parent componentinto
a child component.

The main purpose of props is to provide different component functionalities such as:

e Passing custom data to the React component.
e Usingthrough this.props.reactProp inside render() method of the component.
e Triggering state changes.

For example, consider we are creating an element with reactProp property as given
below: <Element reactProp = "1" />

This reactProp name will be considered as a property attached to the native props
object of React which already exists on each component created with the help of
Reactlibrary: props.reactProp;

Page 17 © Copyright by Interviewbit

<%,
%%, InterviewBit React Interview Questions

11. Explain React state and props.

Props State
Immutable Owned by its component
Has better performance Locally scoped

Can be passed to child

Writeable/Mutable
components

has setState() method to modify
properties

Changes to state can be
asynchronous

can only be passed as props

¢ React State
Every component in react has a built-in state object, which contains all the
property values that belong to that component.
In other words, the state object controls the behaviour of a component. Any
change in the property values of the state object leads to the re-rendering of the
component.

Note- State object is not available in functional components but, we can use
React Hooks to add state to a functional component.

How to declare a state object?

Example:

Page 18 © Copyright by Interviewbit

<%,
%%, InterviewBit React Interview Questions

class Car extends React.Component{
constructor (props){
super(props);
this.state = {
brand: "BMW",
color: "black"

b
by
b

How to use and update the state object?

class Car extends React.Component {
constructor(props) {
super(props);
this.state = {
brand: "BMW",
color: "Black"

}i

changeColor() {
this.setState(prevState => {
return { color: "Red" };

1

}
render() {
return (
<div>
<button onClick={() => this.changeColor()}>Change Color</button>
<p>{this.state.color}</p>
</div>

)i
}
}

As one can see in the code above, we can use the state by calling
this.state.propertyName and we can change the state object property using
setState method.

¢ React Props

Every React component accepts a single object argument called props (which stands
for “properties”). These props can be passed to a component using HTML attributes
and the component accepts these props as an argument.

Page 19 © Copyright by Interviewbit

<%,
o999 InterviewBit React Interview Questions

Using props, we can pass data from one component to another.

Passing props to a component:

While rendering a component, we can pass the props as an HTML attribute:

<Car brand="Mercedes"/>

The component receives the props:

In Class component:

class Car extends React.Component {
constructor(props) {
super(props);
this.state = {
brand: this.props.brand,
color: "Black"

}
}
}
In Functional component:

function Car(props) {
let [brand, setBrand] = useState(props.brand);

}

Note- Props are read-only. They cannot be manipulated or changed inside a
component.

12. Explain about types of side effects in React component.

There are two types of side effects in React component. They are:

Page 20 © Copyright by Interviewbit

InterviewBit React Interview Questions

e Effects without Cleanup: This side effect will be used in useEffect which does
not restrict the browser from screen update. It also improves the responsiveness
of an application. A few common examples are network requests, Logging,
manual DOM mutations, etc.

e Effects with Cleanup: Some of the Hook effects will require the cleanup after
updating of DOM is done. For example, if you want to set up an external data
source subscription, it requires cleaning up the memory else there might be a
problem of memory leak. It is a known fact that React will carry out the cleanup
of memory when the unmounting of components happens. But the effects will
run for each render() method rather than for any specific method. Thus we can
say that, before execution of the effects succeeding time the React will also
cleanup effects from the preceding render.

13. What is prop drilling in React?

Child Child Child Child Child Child Child Child
Ci Ci Component Component Component o C C

&8 InterviewBit Context
Prop drilling Context API

Sometimes while developing React applications, there is a need to pass data from a
component that is higher in the hierarchy to a component that is deeply nested. To
pass data between such components, we pass props from a source component and
keep passing the prop to the next component in the hierarchy till we reach the
deeply nested component.

The disadvantage of using prop drilling is that the components that should
otherwise be not aware of the data have access to the data.

14. What are error boundaries?

Page 21 © Copyright by Interviewbit

s
o2,

~*%9, InterviewBit React Interview Questions

Introduced in version 16 of React, Error boundaries provide a way for us to catch
errors that occur in the render phase.

e What is an error boundary?

Any component which uses one of the following lifecycle methods is considered an
error boundary.
In what places can an error boundary detect an error?

1. Render phase
2. Inside a lifecycle method
3. Inside the constructor

Without using error boundaries:

class CounterComponent extends React.Component{
constructor(props){
super (props);
this.state = {
counterValue: ©

}

this.incrementCounter = this.incrementCounter.bind(this);

}

incrementCounter(){
this.setState(prevState => counterValue = prevState+1);

}
render(){
if(this.state.counter === 2){
throw new Error('Crashed');
}
return(
<div>

<button onClick={this.incrementCounter}>Increment Value</button>
<p>Value of counter: {this.state.counterValue}</p>
</div>

)
by
}

In the code above, when the counterValue equals 2, we throw an error inside the
render method.

Page 22 © Copyright by Interviewbit

o
&,

~*%9, InterviewBit React Interview Questions

When we are not using the error boundary, instead of seeing an error, we see a blank
page. Since any error inside the render method leads to unmounting of the
component. To display an error that occurs inside the render method, we use error
boundaries.

With error boundaries: As mentioned above, error boundary is a component using
one or both of the following methods: static getDerivedStateFromError and
componentDidCatch.

Let’s create an error boundary to handle errors in the render phase:

class ErrorBoundary extends React.Component {
constructor(props) {
super(props);
this.state = { haskError: false };
}
static getDerivedStateFromeError(error) {
return { haskrror: true };
}
componentDidCatch(error, errorInfo) {
logErrorToMyService(error, errorInfo);
}
render () {
if (this.state.hasError) {
return <h4>Something went wrong</h4>

}

return this.props.children;
%
In the code above, getDerivedStateFromError function renders the fallback Ul
interface when the render method has an error.
componentDidCatch logs the error information to an error tracking service.
Now with the error boundary, we can render the CounterComponent in the following

way:

<ErrorBoundary>
<CounterComponent/>
</ErrorBoundary>

Page 23 © Copyright by Interviewbit

InterviewBit React Interview Questions

15. What is React Hooks?

React Hooks are the built-in functions that permit developers for using the state and
lifecycle methods within React components. These are newly added features made
available in React 16.8 version. Each lifecycle of a component is having 3 phases
which include mount, unmount, and update. Along with that, components have
properties and states. Hooks will allow using these methods by developers for
improving the reuse of code with higher flexibility navigating the component tree.

Using Hook, all features of React can be used without writing class components. For
example, before React version 16.8, it required a class component for managing the
state of a component. But now using the useState hook, we can keep the statein a
functional component.

16. Explain React Hooks.

What are Hooks? Hooks are functions that let us “hook into” React state and
lifecycle features from a functional component.

React Hooks cannot be used in class components. They let us write components
without class.

Why were Hooks introduced in React?

React hooks were introduced in the 16.8 version of React. Previously, functional
components were called stateless components. Only class components were used for
state management and lifecycle methods. The need to change a functional
component to a class component, whenever state management or lifecycle methods
were to be used, led to the development of Hooks.

Example of a hook: useState hook:

In functional components, the useState hook lets us define a state for a component:

function Person(props) {

// We are declaring a state variable called name.

// setName is a function to update/change the value of name
let [name, setName] = useState('');

}

Page 24 © Copyright by Interviewbit

InterviewBit React Interview Questions

The state variable “name” can be directly used inside the HTML.

17. What are the rules that must be followed while using React
Hooks?

There are 2 rules which must be followed while you code with Hooks:

e React Hooks must be called only at the top level. It is not allowed to call them
inside the nested functions, loops, or conditions.
e [tisallowed to call the Hooks only from the React Function Components.

18. What is the use of useEffect React Hooks?

The useEffect React Hook is used for performing the side effects in functional
components. With the help of useEffect, you will inform React that your component
requires something to be done after rendering the component or after a state
change. The function you have passed(can be referred to as “effect”) will be
remembered by React and call afterwards the performance of DOM updates is over.
Using this, we can perform various calculations such as data fetching, setting up
document title, manipulating DOM directly, etc, that don’t target the output value.
The useEffect hook will run by default after the first render and also after each update
of the component. React will guarantee that the DOM will be updated by the time
when the effect has run by it.

The useEffect React Hook will accept 2 arguments: useEffect(callbackl,

dependencies]);

Where the first argument callback represents the function having the logic of side-
effect and it will be immediately executed after changes were being pushed to DOM.
The second argument dependencies represent an optional array of dependencies.
The useEffect() will execute the callback only if there is a change in dependencies in
between renderings.

Example:

Page 25 © Copyright by Interviewbit

InterviewBit React Interview Questions

import { useEffect } from 'react';
function WelcomeGreetings({ name }) {

const msg = "Hi, ${name}!"; // Calculates output
useEffect(() => {
document.title = “Welcome to you ${name}"; // Side-effect!
}, [name]);
return <div>{msg}</div>; // Calculates output
}

The above code will update the document title which is considered to be a side-effect
as it will not calculate the component output directly. That is why updating of
document title has been placed in a callback and provided to useEffect().

Consider you don’t want to execute document title update each time on rendering of
WelcomeGreetings component and you want it to be executed only when the name
prop changes then you need to supply name as a dependency to useeffect(callback,

[name])

19. Why do React Hooks make use of refs?

Earlier, refs were only limited to class components but now it can also be accessible
in function components through the useRef Hook in React.

The refs are used for:

e Managing focus, media playback, or text selection.
e Integrating with DOM libraries by third-party.
e Triggering the imperative animations.

20. What are Custom Hooks?

A Custom Hook is a function in Javascript whose name begins with ‘use’ and which
calls other hooks. It is a part of React v16.8 hook update and permits you for reusing
the stateful logic without any need for component hierarchy restructuring.

In almost all of the cases, custom hooks are considered to be sufficient for replacing
render props and HoCs (Higher-Order components) and reducing the amount of
nesting required. Custom Hooks will allow you for avoiding multiple layers of
abstraction or wrapper hell that might come along with Render Props and HoCs.

Page 26 © Copyright by Interviewbit

<%,
o999 InterviewBit React Interview Questions

The disadvantage of Custom Hooks is it cannot be used inside of the classes.

React Interview Questions for Experienced

21. Explain Strict Mode in React.

StrictMode is a tool added in version 16.3 of React to highlight potential problems in
an application. It performs additional checks on the application.

function App() {
return (
<React.StrictMode>
<div classname="App">
<Header/>
<div>
Page Content
</div>
<Footer/>
</div>
</React.StrictMode>
)i
3

To enable StrictMode, <Rreact.strictMode> tags need to be added inside the
application:

import React from "react";
import ReactDOM from "react-dom";
import App from "./App";
const rootElement = document.getElementById("root");
ReactDOM. render (
<React.StrictMode>
<App />
</React.StrictMode>,
rootElement

);

StrictMode currently helps with the following issues:

Page 27 © Copyright by Interviewbit

InterviewBit React Interview Questions

Identifying components with unsafe lifecycle methods:

o Certain lifecycle methods are unsafe to use in asynchronous react
applications. With the use of third-party libraries, it becomes difficult to
ensure that certain lifecycle methods are not used.

o StrictMode helpsin providing us with a warning if any of the class
components use an unsafe lifecycle method.

Warning about the usage of legacy string API:

o Ifoneisusing an older version of React, callback ref is the recommended
way to manage refs instead of using the string refs. StrictMode gives a
warning if we are using string refs to manage refs.

Warning about the usage of findDOMNode:

o Previously, findDOMNode() method was used to search the tree of a DOM
node. This method is deprecated in React. Hence, the StrictMode gives us a
warning about the usage of this method.

Warning about the usage of legacy context API (because the APl is error-
prone).

22. How to prevent re-renders in React?

e Reason for re-renders in React:

o Re-rendering of a component and its child components occur when props
or the state of the component has been changed.

o Re-rendering components that are not updated, affects the performance of
an application.

e How to prevent re-rendering:

Consider the following components:

Page 28 © Copyright by Interviewbit

<%,
o999 InterviewBit React Interview Questions

class Parent extends React.Component {
state = { messageDisplayed: false };
componentDidMount () {

this.setState({ messageDisplayed: true });

}
render () {
console.log("Parent is getting rendered");
return (
<div className="App">
<Message />
</div>
)i
X
}

class Message extends React.Component {
constructor(props) {

super(props);

this.state = { message: "Hello, this is vivek" };

}
render () {
console.log("Message is getting rendered");
return (
<div>
<p>{this.state.message}</p>
</div>

)
}
}

e The Parent component is the parent component and the Message is the child
component. Any change in the parent component will lead to re-rendering of
the child component as well. To prevent the re-rendering of child components,
we use the shouldComponentUpdate() method:

**Note- Use shouldComponentUpdate() method only when you are sure that it’s
a static component.

Page 29 © Copyright by Interviewbit

o',
%%, InterviewBit React Interview Questions

class Message extends React.Component {
constructor(props) {

super(props);

this.state = { message: "Hello, this is vivek" };

shouldComponentUpdate() {
console.log("Does not get rendered");
return false;

}
render () {
console.log("Message is getting rendered");
return (
<div>
<p>{this.state.message}</p>
</div>

)
}
}

As one can see in the code above, we have returned false from the

shouldComponentUpdate() method, which prevents the child component from re-
rendering.

23. What are the different ways to style a React component?

There are many different ways through which one can style a React component.
Some of the ways are :

¢ Inline Styling: We can directly style an element using inline style attributes.
Make sure the value of style is a JavaScript object:

class RandomComponent extends React.Component {
render () {
return (
<div>
<h3 style={{ color: "Yellow" }}>This is a heading</h3>
<p style={{ fontSize: "32px" }}>This is a paragraph</p>
</div>
)i
}
}

Page 30 © Copyright by Interviewbit

%
”

S, InterviewBit React Interview Questions

e Using JavaScript object: We can create a separate JavaScript object and set the
desired style properties. This object can be used as the value of the inline style

attribute.

class RandomComponent extends React.Component {
paragraphStyles = {
color: "Red",
fontSize: "32px"

¥i

headingStyles = {
color: "blue",
fontSize: "48px"

i
render () {
return (
<div>
<h3 style={this.headingStyles}>This is a heading</h3>
<p style={this.paragraphStyles}>This is a paragraph</p>
</div>
)
}
}

e CSS Stylesheet: We can create a separate CSS file and write all the styles for the
component inside that file. This file needs to be imported inside the component

file.

import './RandomComponent.css';

class RandomComponent extends React.Component {
render() {
return (
<div>
<h3 className="heading">This is a heading</h3>
<p className="paragraph">This is a paragraph</p>
</div>
)
}
}

Page 31 © Copyright by Interviewbit

o',
&9 InterviewBit React Interview Questions

e CSS Modules: We can create a separate CSS module and import this module
inside our component. Create a file with “.module.css”‘ extension,
styles.module.css:

.paragraph{
color:'"red";
border:1px solid black;

}

We can import this file inside the component and use it:

import styles from './styles.module.css';

class RandomComponent extends React.Component {
render () {
return (
<div>
<h3 className="heading">This is a heading</h3>
<p className={styles.paragraph} >This is a paragraph</p>
</div>
)i
}
}

24. Name a few techniques to optimize React app performance.

There are many ways through which one can optimize the performance of a React
app, let’s have a look at some of them:

Page 32 © Copyright by Interviewbit

InterviewBit React Interview Questions

e Using useMemo() -

o ItisaReact hook thatis used for caching CPU-Expensive functions.

o Sometimesin a React app, a CPU-Expensive function gets called repeatedly
due to re-renders of a component, which can lead to slow rendering.
useMemo() hook can be used to cache such functions. By using useMemo(
), the CPU-Expensive function gets called only when it isneeded.

e Using React.PureComponent -

o Itisabase component class that checks the state and props of a
component to know whether the component should be updated.

o Instead of using the simple React.Component, we can use
React.PureComponent to reduce the re-renders of a component
unnecessarily.

e Maintaining State Colocation -

o Thisis a process of moving the state as close to where you need it as
possible.

o Sometimes in React app, we have a lot of unnecessary states inside the
parent component which makes the code less readable and harder to
maintain. Not to forget, having many states inside a single component
leads to unnecessary re-renders for the component.

o Itis better to shift states which are less valuable to the parent component,
to a separate component.

e LazyLoading -
o Itisatechnique used to reduce the load time of a React app. Lazy loading
helps reduce the risk of web app performances to a minimum.

25. How to pass data between react components?

Page 33 © Copyright by Interviewbit

o',
&9 InterviewBit React Interview Questions

Pass props

—>
Parent ¢

Emit events

&8 InterviewBit

Parent Component to Child Component (using props)

With the help of props, we can send data from a parent to a child component.

How do we do this?

Consider the following Parent Component:

import ChildComponent from "./Child";
function ParentComponent(props) {
let [counter, setCounter] = useState(0);

let increment = () => setCounter(++counter);

return (
<div>
<button onClick={increment}>Increment Counter</button>

<ChildComponent counterValue={counter} />
</div>

¥
}

As one can see in the code above, we are rendering the child component inside the

parent component, by providing a prop called counterValue. The value of the counter
is being passed from the parent to the child component.

We can use the data passed by the parent component in the following way:

Page 34 © Copyright by Interviewbit

o',
%%, InterviewBit React Interview Questions

function ChildComponent(props) {
return (
<div>

<p>Value of counter: {props.counterValue}</p>
</div>

);
}

We use the props.counterValue to display the data passed on by the parent
component.

Child Component to Parent Component (using callbacks)

This one is a bit tricky. We follow the steps below:

e (Create a callback in the parent component which takes in the data needed as a
parameter.

e Pass this callback as a prop to the child component.
e Send data from the child component using the callback.

We are considering the same example above but in this case, we are going to pass the
updated counterValue from child to parent.

Stepl and Step2: Create a callback in the parent component, pass this callback as a
prop.

function ParentComponent(props) {
let [counter, setCounter] = useState(0);

let callback = valueFromChild => setCounter(valueFromChild);
return (

<div>
<p>Value of counter: {counter}</p>

<ChildComponent callbackFunc={callback} counterValue={counter} />
</div>

);
3

As one can see in the code above, we created a function called callback which takes
in the data received from the child component as a parameter.

Next, we passed the function callback as a prop to the child component.

Page 35 © Copyright by Interviewbit

o',
%%, InterviewBit React Interview Questions

Step3: Pass data from the child to the parent component.

function ChildComponent(props) {
let childCounterValue = props.counterValue;
return (
<div>
<button onClick={() => props.callbackFunc(++childCountervalue)}>
Increment Counter
</button>
</div>

)i
}

In the code above, we have used the props.counterValue and set it to a variable called
childCounterValue.

Next, on button click, we pass the incremented childCounterValue to the
props.callbackFunc.

This way, we can pass data from the child to the parent component.

26. What are Higher Order Components?

Simply put, Higher-Order Component(HOC) is a function that takes in a component
and returns a new component.

Enhanced or composed
Component

Component

Higher order
Component
Component

6@3 InterviewBit

Additional
Funcitionality of data

When do we need a Higher Order Component?

Page 36 © Copyright by Interviewbit

3
o

&9 InterviewBit React Interview Questions

While developing React applications, we might develop components that are quite
similar to each other with minute differences. In most cases, developing similar
components might not be an issue but, while developing larger applications we need
to keep our code DRY, therefore, we want an abstraction that allows us to define this
logic in a single place and share it across components. HOC allows us to create that
abstraction.

Example of a HOC:

Consider the following components having similar functionality. The following
component displays the list of articles:

Page 37 © Copyright by Interviewbit

<%,
o999 InterviewBit React Interview Questions

// "GlobalDataSource" is some global data source
class ArticleslList extends React.Component {
constructor(props) {
super(props);
this.handleChange = this.handleChange.bind(this);
this.state = {
articles: GlobalDataSource.getArticles(),
1
}
componentDidMount () {
// Listens to the changes added
GlobalDataSource.addChangelListener (this.handleChange);
}
componentWillUnmount() {
// Listens to the changes removed
GlobalDataSource.removeChangelListener(this.handleChange);

}
handleChange() {
// States gets Update whenver data source changes
this.setState({
articles: GlobalDataSource.getArticles(),

1)

}
render () {
return (
<div>
{this.state.articles.map((article) => (
<ArticleData article={article} key={article.id} />
)}
</div>
)i
}
}

The following component displays the list of users:

Page 38 © Copyright by Interviewbit

<%,
o999 InterviewBit React Interview Questions

// "GlobalDataSource" is some global data source
class UsersList extends React.Component {
constructor(props) {
super(props);
this.handleChange = this.handleChange.bind(this);
this.state = {
users: GlobalDataSource.getUsers(),
1
}
componentDidMount () {
// Listens to the changes added
GlobalDataSource.addChangelListener (this.handleChange);
}
componentWillUnmount() {
// Listens to the changes removed
GlobalDataSource.removeChangelListener(this.handleChange);

}
handleChange() {
// States gets Update whenver data source changes
this.setState({
users: GlobalDataSource.getUsers(),

1)

}
render () {
return (
<div>
{this.state.users.map((user) => (
<UserData user={user} key={user.id} />
)}
</div>
)i
}
}

Notice the above components, both have similar functionality but, they are calling
different methods to an APl endpoint.

Let’s create a Higher Order Component to create an abstraction:

Page 39 © Copyright by Interviewbit

o
&,

~*%9, InterviewBit React Interview Questions

// Higher Order Component which takes a component
// as input and returns another component
// "GlobalDataSource" is some global data source
function HOC(WrappedComponent, selectData) {
return class extends React.Component {
constructor(props) {
super(props);
this.handleChange = this.handleChange.bind(this);
this.state = {
data: selectData(GlobalDataSource, props),
3
}
componentDidMount() {
// Listens to the changes added
GlobalDataSource.addChangeListener (this.handleChange);
}
componentwWillUnmount() {
// Listens to the changes removed
GlobalDataSource.removeChangeListener (this.handleChange);

}
handleChange() {
this.setState({
data: selectData(GlobalDataSource, this.props),

1)

}

render () {
// Rendering the wrapped component with the latest data data
return <WrappedComponent data={this.state.data} {...this.props} />;

}
B
}

We know HOC is a function that takes in a component and returns a component.

In the code above, we have created a function called HOC which returns a component
and performs functionality that can be shared across both the ArticlesList
component and UsersList Component.

The second parameter in the HOC function is the function that calls the method on
the APl endpoint.

We have reduced the duplicated code of the componentDidUpdate and
componentDidMount functions.

Page 40 © Copyright by Interviewbit

InterviewBit React Interview Questions

Using the concept of Higher-Order Components, we can now render the ArticlesList
and UsersList components in the following way:

const ArticlesListWithHOC = HOC(ArticlesList, (GlobalDataSource) => GlobalDataSource.(ge
const UsersListWithHOC = HOC(UsersList, (GlobalDataSource) => GlobalDataSource.getUsers

Remember, we are not trying to change the functionality of each component, we are
trying to share a single functionality across multiple components using HOC.

27. What are the different phases of the component lifecycle?

There are four different phases in the lifecycle of React component. They are:

e Initialization: During this phase, React component will prepare by setting up
the default props and initial state for the upcoming tough journey.

e Mounting: Mounting refers to putting the elementsinto the browser DOM. Since
React uses VirtualDOM, the entire browser DOM which has been currently
rendered would not be refreshed. This phase includes the lifecycle methods

componentWillMount and componentDidMount

e Updating: In this phase, a component will be updated when there is a change in
the state or props of a component. This phase will have lifecycle methods like

componentwillUpdate , shouldComponentUpdate , render ,ar1d
componentDidUpdate

e Unmounting: In this last phase of the component lifecycle, the component will
be removed from the DOM or will be unmounted from the browser DOM. This
phase will have the lifecycle method named componentwillunmount

Page 41 © Copyright by Interviewbit

‘ ss%, InterviewBit React Interview Questions

React Lifecycle Phases and Methods

Initialization Mounting Updation Unmounting
setup props and state ComponentWillMount ComponentwillReceiveProps shouldComponentUpdate ComponentWillUnmount
true Xfalse
shouldComponentUpdate ComponentWillUpdate

| true X false

ComponentDidMount ComponentWillUpdate “
Componentmdupdate
. . ComponentDidUpdate
&8s InterviewBit

28. What are the lifecycle methods of React?

React lifecycle hooks will have the methods that will be automatically called at
different phases in the component lifecycle and thus it provides good control over
what happens at the invoked point. It provides the power to effectively control and
manipulate what goes on throughout the component lifecycle.

For example, if you are developing the YouTube application, then the application will
make use of a network for buffering the videos and it consumes the power of the
battery (assume only these two). After playing the video if the user switches to any
other application, then you should make sure that the resources like network and
battery are being used most efficiently. You can stop or pause the video buffering
which in turn stops the battery and network usage when the user switches to another
application after video play.

So we can say that the developer will be able to produce a quality application with
the help of lifecycle methods and it also helps developers to make sure to plan what
and how to do it at different points of birth, growth, or death of user interfaces.

The various lifecycle methods are:

Page 42 © Copyright by Interviewbit

InterviewBit React Interview Questions

e constructor() :This method will be called when the component isinitiated
before anything has been done. It helps to set up the initial state and initial
values.

® getDerivedStateFromProps() :This method will be called just before element(s)
rendering in the DOM. It helps to set up the state object depending on the initial
props. The getDerivedStateFromProps() method will have a state as an
argument and it returns an object that made changes to the state. Thiswill be
the first method to be called on an updating of a component.

e render() :Thismethod will output orre-renderthe HTML to the DOM with
new changes. The render() method is an essential method and will be called
always while the remaining methods are optional and will be called only if they
are defined.

® componentdidMount() : Thismethod will be called after the rendering of the
component. Using this method, you can run statements that need the
component to be already kept in the DOM.

® shouldcComponentUpdate() : The Boolean value will be returned by this method
which will specify whether React should proceed further with the rendering or
not. The default value for this method will be True.

® getsSnapshotBeforeupdate() : This method will provide access for the props as
well as for the state before the update. It is possible to check the previously
present value before the update, even after the update.

e componentDidupdate() :This method will be called after the component has
been updated in the DOM.

® componentwillunmount() :This method will be called when the component
removal from the DOM is about to happen.

29. Does React Hook work with static typing?

Static typing refers to the process of code check during the time of compilation for
ensuring all variables will be statically typed. React Hooks are functions that are
designed to make sure about all attributes must be statically typed. For enforcing
stricter static typing within our code, we can make use of the React APl with custom
Hooks.

Page 43 © Copyright by Interviewbit

InterviewBit React Interview Questions

30. Explain about types of Hooks in React.

There are two types of Hooks in React. They are:

1. Built-in Hooks: The built-in Hooks are divided into 2 parts as given below:

e Basic Hooks:

o usestate() :Thisfunctional componentisused to set and retrieve the
state.

o usekffect() :Itenablesfor performing the side effectsin the functional
components.

o usecontext() :Iltisused forcreatingcommon data thatisto be accessed
by the components hierarchy without having to pass the props down to
each level.

¢ Additional Hooks:

O useReducer() :ltisused when thereisacomplex state logic thatishaving
several sub-values or when the upcoming state is dependent on the
previous state. It will also enable you to optimization of component
performance that will trigger deeper updates as it is permitted to pass the
dispatch down instead of callbacks.

o useMemo() :Thiswill be used for recomputing the memoized value when
there is a change in one of the dependencies. This optimization will help for
avoiding expensive calculations on each render.

O usecallback() :Thisisuseful while passing callbacksinto the optimized
child components and depends on the equality of reference for the
prevention of unneeded renders.

O useImperativeHandle() : It will enable modifyingthe instance that will be
passed with the ref object.

© usebebugvalue() :Itisused fordisplayinga label for custom hooksin React
DevTools.

o useRef() :ltwill permit creating a reference to the DOM element directly
within the functional component.

O useLayoutEffect() :Itisused forthereadinglayoutfrom the DOM and re-
rendering synchronously.

Page 44 © Copyright by Interviewbit

<%,
o999 InterviewBit React Interview Questions

2. Custom Hooks: A custom Hook is basically a function of JavaScript. The Custom
Hook working is similar to a regular function. The “use” at the beginning of the
Custom Hook Name is required for React to understand that thisis a custom Hook
and also it will describe that this specific function follows the rules of Hooks.
Moreover, developing custom Hooks will enable you for extracting component logic
from within reusable functions.

Types of Hooks in React

Types of Hooks

Built-in Hooks Custom Hooks

Additional HOOkS

——useState() —— useReducer()

——useEffect() —— useMemo()

L——useContext() —— useCallback()
—— uselmperativeHandle()
—— useDebugValue()

—— useRef()

é@é InterviewBit L useLayoutEffect()

31. Differentiate React Hooks vs Classes.

Page 45 © Copyright by Interviewbit

InterviewBit

React Interview Questions

React Hooks

Itisused in functional
components of React.

It will not require a
declaration of any kind
of constructor.

It does not require the
use of this keyword
in state declaration or
modification.

It is easier to use

because of the
useState

functionality.

React Hooks can be
helpful in implementing
Redux and context API.

Classes

It isused in class-based
components of React.

It is necessary to declare the
constructor inside the class
component.

Keyword this will be usedin
state declaration (this.state)
and in modification
(this.setState())

No specific function is available
for helping us to access the state
and its corresponding setState
variable.

Because of the long setup of
state declarations, class states
are generally not preferred.

32. How does the performance of using Hooks will differ in
comparison with the classes?

e React Hooks will avoid a lot of overheads such as the instance creation, binding
of events, etc., that are present with classes.

e Hooks in React will result in smaller component trees since they will be avoiding
the nesting that exists in HOCs (Higher Order Components) and will render props
which result in less amount of work to be done by React.

Page 46

© Copyright by Interviewbit

<%,
%%, InterviewBit React Interview Questions

33. Do Hooks cover all the functionalities provided by the
classes?

Our goal is for Hooks to cover all the functionalities for classes at its earliest. There
are no Hook equivalents for the following methods that are not introduced in Hooks
yet:

L getSnapshotBeforeUpdate()
® getDerivedStateFromError()

4 componentDidCatch()

Since it is an early time for Hooks, few third-party libraries may not be compatible
with Hooks at present, but they will be added soon.

34. What is React Router?

React Router refers to the standard library used for routing in React. It permits us for
building a single-page web application in React with navigation without even
refreshing the page when the user navigates. It also allows to change the browser
URL and will keep the user interface in sync with the URL. React Router will make use
of the component structure for calling the components, using which appropriate
information can be shown. Since React is a component-based framework, it’s not
necessary to include and use this package. Any other compatible routing library
would also work with React.

The major components of React Router are given below:

Page 47 © Copyright by Interviewbit

InterviewBit React Interview Questions

e BrowserRouter: It is a router implementation that will make use of the HTML5
history API (pushState, popstate, and event replaceState) for keeping your Ul to
be in sync with the URL. It is the parent component useful in storing all other
components.

e Routes: It isa newer component that has been introduced in the React v6 and
an upgrade of the component.

¢ Route: It is considered to be a conditionally shown component and some Ul will
be rendered by this whenever there is a match between its path and the current
URL.

e Link: Itisusefulin creating links to various routes and implementing navigation
all over the application. It works similarly to the anchor tag in HTML.

35. Can React Hook replaces Redux?

The React Hook cannot be considered as a replacement for Redux (It is an open-
source, JavaScript library useful in managing the application state) when it comes to
the management of the global application state tree in large complex applications,
even though the React will provide a useReducer hook that manages state transitions
similar to Redux. Redux is very useful at a lower level of component hierarchy to
handle the pieces of a state which are dependent on each other, instead of a
declaration of multiple useState hooks.

In commercial web applications which is larger, the complexity will be high, so using
only React Hook may not be sufficient. Few developers will try to tackle the challenge
with the help of React Hooks and others will combine React Hooks with the Redux.

36. Explain conditional rendering in React.

Conditional rendering refers to the dynamic output of user interface markups based
on a condition state. It works in the same way as JavaScript conditions. Using
conditional rendering, it is possible to toggle specific application functions, APl data
rendering, hide or show elements, decide permission levels, authentication handling,
and so on.

There are different approaches for implementing conditional rendering in React.
Some of them are:

Page 48 © Copyright by Interviewbit

InterviewBit React Interview Questions

e Using if-else conditional logic which is suitable for smaller as well as for medium-
sized applications

e Using ternary operators, which takes away some amount of complication from
if-else statements

e Using element variables, which will enable us to write cleaner code.

37. Explain how to create a simple React Hooks example
program.

| will assume that you are having some coding knowledge about JavaScript and have
installed Node on your system for creating a below given React Hook program. An
installation of Node comes along with the command-line tools: npm and npx, where
npm is useful to install the packages into a project and npx is useful in running
commands of Node from the command line. The npx looks in the current project
folder for checking whether a command has been installed there. When the
command is not available on your computer, the npx will look in the npmjs.com
repository, then the latest version of the command script will be loaded and will run
without locally installing it. This feature is useful in creating a skeleton React
application within a few key presses.

Open the Terminal inside the folder of your choice, and run the following command:
npx create-react-app react-items-with-hooks

Here,the create-react-app isan app initializer created by Facebook, to help with
the easy and quick creation of React application, providing options to customize it
while creating the application? The above command will create a new folder named
react-items-with-hooks and it will be initialized with a basic React application. Now,
you will be able to open the project in your favourite IDE. You can see an src folder
inside the project along with the main application component app.js . Thisfileis
having a single function app() which will return an element and it will make use of
an extended JavaScript syntax(JSX) for defining the component.

Page 49 © Copyright by Interviewbit

<%,
%%, InterviewBit React Interview Questions

JSX will permit you for writing HTML-style template syntax directly into the
JavaScript file. This mixture of JavaScript and HTML will be converted by React
toolchain into pure JavaScript that will render the HTML element.

It is possible to define your own React components by writing a function that will
return a JSX element. You can try this by creating a new file src/searchitem.js and
put the following code into it.

import React from 'react';
export function SearchItem() {
return (
<div>
<div className="search-input'">
<input type="text" placeholder="SearchItem"/>
</div>
<hl className="h1">Search Results</h1>
<div className="items">
<table>
<thead>
<tr>
<th className="itemname-col">Item Name</th>
<th className="price-col">Price</th>
<th className="quantity-col">Quantity</th>
</tr>
</thead>
<tbody></tbhody>
</table>
</div>
</div>
)
}

Thisis all about how you can create a component. It will only display the empty table
and doesn’t do anything. But you will be able to use the Search componentin the
application. Open thefile src/app.js and add the import statement given below to
the top of thefile.

import { SearchItem } from './SearchItem';

Now, from the logo.svg, import will be removed and then contents of returned value
in the function app() will be replaced with the following code:

Page 50 © Copyright by Interviewbit

<%,
%%, InterviewBit React Interview Questions

<div className="App">
<header>
Items with Hooks
</header>
<SearchItem/>
</div>

You can notice that the element <Searchltem/> has been used just similarto an
HTML element. The JSX syntax will enable for including the components in this
approach directly within the JavaScript code. Your application can be tested by
running the below-given command in your terminal.

npm start

This command will compile your application and open your default browser into
http://localhost:4000. Thiscommand can be kept on running when code
development isin progress to make sure that the application is up-to-date, and also
this browser page will be reloaded each time you modify and save the code.

This application will work finely, but it doesn’t look nice as it doesn’t react to any
input from the user. You can make it more interactive by adding a state with React
Hooks, adding authentication, etc.

38. How to create a switching component for displaying
different pages?

A switching component refers to a component that will render one of the multiple
components. We should use an object for mapping prop values to components.

A below-given example will show you how to display different pages based on page
prop using switching component:

Page 51 © Copyright by Interviewbit

s
o2,

~*%9, InterviewBit React Interview Questions

import HomePage from './HomePage'
import AboutPage from './AboutPage'
import FacilitiesPage from './FacilitiesPage'
import ContactPage from './ContactPage'
import HelpPage from './HelpPage'
const PAGES = {

home: HomePage,

about: AboutPage,

facilitiess: FacilitiesPage,

contact: ContactPage

help: HelpPage
}
const Page = (props) => {

const Handler = PAGES[props.page] || HelpPage

return <Handler {...props} />
X
// The PAGES object keys can be used in the prop types for catching errors during dev-t
Page.propTypes = {

page: PropTypes.oneOf(Object.keys(PAGES)).isRequired
}

39. How to re-render the view when the browser is resized?

It is possible to listen to the resize event in componentDidMount() and then update
the width and height dimensions. It requires the removal of the event listener in the
componentWillUnmount() method.

Using the below-given code, we can render the view when the browser is resized.

Page 52 © Copyright by Interviewbit

<%,
%%, InterviewBit React Interview Questions

class WindowSizeDimensions extends React.Component {
constructor (props){

super(props);

this.updateDimension = this.updateDimension.bind(this);

}

componentWillMount () {
this.updateDimension()

}

componentDidMount () {
window.addEventListener('resize', this.updateDimension)

}

componentWillUnmount() {
window.removeEventListener('resize', this.updateDimension)

}

updateDimension() {
this.setState({width: window.innerWidth, height: window.innerHeight})

}
render () {
return {this.state.width} x {this.state.height}

b
b

40. How to pass data between sibling components using React
router?

Passing data between sibling components of React is possible using React Router
with the help of history.push and match.params

In the code given below, we have a Parent component apppemo.js and have two
Child Components Homepage and AboutPage .Everythingiskeptinside a Router by
using React-router Route. It is also having a route for /about/{params} where we will
pass the data.

Page 53 © Copyright by Interviewbit

<%,
o999 InterviewBit React Interview Questions

import React, { Component } from ‘react’;
class AppDemo extends Component {

render () {
return (
<Router>
<div className="AppDemo">

<NavLink to="/" activeStyle={{ color:'blue' }}>Home</NavLink>
</1li>

<NavLink to="/about" activeStyle={{ color:'blue' }}>About
</NavLink>
</1li>

<Route path="/about/:aboutId" component={AboutPage} />
<Route path="/about" component={AboutPage} />
<Route path="/" component={HomePage} />
</div>
</Router>
)i
by
}

export default AppDemo;

The HomePage is a functional component with a button. On button click, we are
using props.history.push(‘/about/’ + data) to programmatically navigate into
/about/data

export default function HomePage(props) {

const handleClick = (data) => {
props.history.push('/about/' + data);

}

return (

<div>
<button onClick={() => handleClick('DemoButton')}>To About</button>

</div>

)
}

Also, the functional component AboutPage will obtain the data passed by

props.match.params.aboutId

Page 54 © Copyright by Interviewbit

InterviewBit React Interview Questions

export default function AboutPage(props) {
if(!props.match.params.aboutId) {

return <div>No Data Yet</div>
}

return (

<div>

{ Data obtained from HomePage is ${props.match.params.aboutId} }
</div>

)
b

After button click in the HomePage the page will look like below:

€ [e BNl () iesinost 1000/a5001 DemoB utton

oy Bt B Erdt Big Bwd B wed? Bvoe Bt B g B wk B Toas B Poect B Tuodes2 B Titorissd B Tuld

Home About

Data obtained from HomePage iz DemoButton
No Data Yet

SR InterviewBit

41. How to perform automatic redirect after login?

The react-router package will provide the component <redirect> in React Router.
Renderingof a <Rredirect> component will navigate to a newer location. In the
history stack, the current location will be overridden by the new location just like the
server-side redirects.

import React, { Component } from 'react'
import { Redirect } from 'react-router'
export default class LoginDemoComponent extends Component {
render() {
if (this.state.islLoggedIn === true) {
return <Redirect to="/your/redirect/page" />
} else {
return <div>{'Please complete login'}</div>
}
}
}

Page 55 © Copyright by Interviewbit

<%,
o999 InterviewBit React Interview Questions

Conclusion

React has got more popularity among the top IT companies like Facebook, PayPal,
Instagram, Uber, etc., around the world especially in India. Hooks is becoming a trend
in the React community as it removes the state management complexities.

This article includes the most frequently asked ReactJS and React Hooks interview
questions and answers that will help you in interview preparations. Also, remember
that your success during the interview is not all about your technical skills, it will also
be based on your state of mind and the good impression that you will make at first.
All the best!!

Useful References and Resources:

"Beginning React with Hooks " book by Greg Lim
“Learn React Hooks” book by Daniel Bugl
Node.jsvs React.js

React Native Interview Questions

Page 56 © Copyright by Interviewbit

Links to More Interview

Questions

C Interview Questions

Web Api Interview
Questions

Cpp Interview Questions

Machine Learning Interview
Questions

Css Interview Questions

Django Interview Questions

Operating System Interview

Questions

Git Interview Questions

Dbms Interview Questions

Pl Sql Interview Questions

Ansible Interview Questions

Php Interview Questions

Hibernate Interview
Questions

Oops Interview Questions

Docker Interview Questions

Laravel Interview Questions

Dot Net Interview Questions

React Native Interview
Questions

Java 8 Interview Questions

Spring Boot Interview
Questions

Tableau Interview
Questions

Java Interview Questions

C Sharp Interview Questions

Node Js Interview Questions

Devops Interview Questions

Mysql Interview Questions

Asp Net Interview Questions

Kubernetes Interview
Questions

Aws Interview Questions
Mongodb Interview
Questions

Power Bi Interview Questions

Linux Interview Questions

Jenkins Interview Questions

Page 57

© Copyright by Interviewbit

